 output.to from Sideway
Draft for Information Only

# Content

`Plane Trigonometry Additional Formula Examples of the solutions of Triangles  Example 1  Example 2 Example 3    Remark Sources and References`

# Plane Trigonometry

823 cot𝐴+tan𝐴=2cosec2𝐴=sec𝐴cosec𝐴 824 cosec2𝐴+cot2𝐴=cot𝐴⋅sec𝐴=1+tan𝐴tan𝐴2 826 cos𝐴=cos4𝐴2sin4𝐴2 827 tan𝐴+sec𝐴=tan45°+𝐴2 828 tan𝐴+tan𝐵cot𝐴+cot𝐵=tanAtan𝐵 829 sec2𝐴cosec2𝐴=sec2𝐴+cosec2𝐴 830 If 𝐴+𝐵+𝐶=𝜋2 tan𝐵tan𝐶+tan𝐶tan𝐴+tan𝐴tan𝐵=1 831 If 𝐴+𝐵+𝐶=𝜋, cot𝐵cot𝐶+cot𝐶cot𝐴+cot𝐴cot𝐵=1 832 sin−135+sin−145=𝜋2, tan−112+tan−113=𝜋4 833 In a right-angled triangle 𝐴𝐵𝐶, 𝐶 being the right angle, cos2𝐵=𝑎2−𝑏2𝑎2+𝑏2, tan2𝐵=2𝑏𝑏𝑎2−𝑏2 834 tan12𝐴=𝑐−𝑏𝑐+𝑏. 𝑅+𝑟=12(𝑎+𝑏). 835 In any triangle, sin12(𝐴−𝐵)=𝑎−𝑏𝑐cos12𝐶 cos12(𝐴−𝐵)=𝑎+𝑏𝑐sin12𝐶 836 sin𝐴−𝐵sin𝐴+𝐵=𝑎2−𝑏2𝑐2 tan12𝐴+tan12𝐵tan12𝐴−tan12𝐵=𝑐𝑎−𝑏 837 12(𝑎2+𝑏2+𝑐2)=𝑏𝑐cos𝐴+𝑐𝑎cos𝐵+𝑎𝑏cos𝐶 838 Area of triangle 𝐴𝐵𝐶=12𝑏𝑐sin𝐴=12𝑎2sin𝐵sin𝐶sin𝐴=12(𝑎2−𝑏2)sin𝐴sin𝐵sin(𝐴−𝐵) 839 Area of triangle 𝐴𝐵𝐶=2𝑎𝑏𝑐𝑎+𝑏+𝑐cos12𝐴cos12𝐵cos12𝐶 840 Area of triangle 𝐴𝐵𝐶=14(𝑎+𝑏+𝑐)2tan12𝐴tan12𝐵tan12𝐶 841 𝑟=12(𝑎+𝑏+𝑐)tan12𝐴tan12𝐵tan𝐶 842 2𝑅𝑟=𝑎𝑏𝑐𝑎+𝑏+𝑐, △=𝑟𝑟𝑎𝑟𝑏𝑟𝑐 843 𝑎cos𝐴+𝑏cos𝐵+𝑐cos𝐶=4𝑅sin𝐴sin𝐵sin𝐶 844 𝑅+𝑟=12(𝑎cot𝐴+𝑏cot𝐵+𝑐cot𝐶) =sum of perpendiculars on the sides from centre of circumscribing circle.
This may also be shown by applying Enc. VI. D. to the circle described on 𝑅 as diameter and the quadrilateral so formed. 845 𝑟𝑎𝑟𝑏𝑟𝑐=𝑎𝑏𝑐cos12𝐴cos12𝐵cos12𝐶 846 𝑟=(𝑟𝑏𝑟𝑐)+(𝑟𝑐𝑟𝑎)+(𝑟𝑎𝑟𝑏) 847 1𝑟=1𝑟𝑎+1𝑟𝑏+1𝑟𝑐. tan12𝐴=𝑟𝑟𝑎𝑟𝑏𝑟𝑐 849 If 𝑂 be the centre of inscribed circle, 𝑂𝐴=2𝑏𝑐𝑎+𝑏+𝑐cos12𝐴 850 𝑎(𝑏cos𝐶−𝑐cos𝐵)=𝑏2−𝑐2 851 𝑏cos𝐵+𝑐cos𝐶=𝑐cos(𝐵−𝐶) 852 𝑎cos𝐴+𝑏cos𝐵+𝑐cos𝐶=2𝑎sin𝐵sin𝐶 853 cos𝐴+cos𝐵+cos𝐶=1+2𝑎sin𝐵sin𝐶𝑎+𝑏+𝑐 854 If 𝑠=12(𝑎+𝑏+𝑐), 1−cos2𝑎−cos2𝑏−cos2𝑐+2cos𝑎cos𝑏cos𝑐=4sin𝑠sin(𝑠−𝑎)sin(𝑠−𝑏)sin(𝑠−𝑐) 855 −1+cos2𝑎+cos2𝑏+cos2𝑐+2cos𝑎cos𝑏cos𝑐=4cos𝑠cos(𝑠−𝑎)cos(𝑠−𝑏)cos(𝑠−𝑐) 856 4cos𝑎2cos𝑏2cos𝑐2=cos𝑠+cos(𝑠−𝑎)+cos(𝑠−𝑏)+cos(𝑠−𝑐) 857 4sin𝑎2sin𝑏2sin𝑐2=−sin𝑠+sin(𝑠−𝑎)+sin(𝑠−𝑏)+sin(𝑠−𝑐) 858 𝜋2=61+122+132+⋯=81+123+152+⋯ Proof: Equate coefficients of 𝜃2 in the expansion of sin𝜃𝜃 by (764) and (815) or of cos𝜃 by (765) and (816).

## Examples of the solutions of Triangles

### Example 1

Case II. (724): Two sides of a triangle 𝑏, 𝑐, being 900 and 700 feet, and the included angle 47°55′, to find the remaining angles. tan𝐵−𝐶2=𝑏−𝑐𝑏+𝑐cot𝐴2=18cot23°42ʹ30ʺ; therefore logtan12(𝐵−𝐶)=logcot𝐴2log8 therefore 𝐿tan12(𝐵−𝐶)=𝐿cot23°42ʹ30ʺ−3log2 10 being added to each side of the equation.
∴ 𝐿cot23°42ʹ30ʺ=10.3573942* 3log2=0.9030900 ∴ 𝐿tan12(𝐵−𝐶)=9.4543042
{ 12(𝐵−𝐶)=15°53ʹ19.55ʺ* and 12(𝐵+𝐶)=66°17ʹ30.00ʺ∴ 𝐵=82°10ʹ49.55ʺ And, by subtraction, 𝐶=50°24ʹ10.45ʺ

### Example 2

Case III. (732). Given the sides 𝑎, 𝑏, 𝑐= 7, 8, 9 respectively, to find the angles. tan𝐴2=(𝑠−𝑏)(𝑠−𝑐)𝑠(𝑠−𝑎)=4⋅312⋅5=210 therefore 𝐿tan𝐴2=10+12(log2−1)=9.650515 therefore 12𝐴=24°5ʹ41.43ʺ* 12𝐵 is found in a similar manner, and 𝐶=180°−𝐴−𝐵.

## Example 3

In a right-angled triangle, given the hypotenuse 𝑐=6953 and a side 𝑏=3, to find the remaoning angles.
Here cos𝐴=36953. But, since 𝐴 is nearly a right angle, it cannot be determined accurately from logcos𝐴. Therefore take sin𝐴2=1−cos𝐴2=34756953 therefore 𝐿sin𝐴2=10+12(log3475−log6953)=9.8493913 therefore 𝐴2=44°59ʹ15.52ʺ* therefore 𝐴=89°58ʹ31.04ʺ and 𝐵=0°1ʹ28.96ʺ
##### Remark
* See Chambers's Mathematieal Tables for a concise explanation of the method of obtaining thes figures.

## Sources and References

https://archive.org/details/synopsis-of-elementary-results-in-pure-and-applied-mathematics-pdfdrive

ID: 210900013 Last Updated: 9/13/2021 Revision: 0 Ref: References

1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science &amp; Engineering
2. Ayres, F. JR, Moyer, R.E., 1999, Schaum's Outlines: Trigonometry
3. Hopkings, W., 1833, Elements of Trigonometry  Home 5

Management

HBR 3

Information

Recreation

Culture

Chinese 1097

English 337

Computer

Hardware 156

Software

Application 207

Latex 35

Manim 203

Numeric 19

Programming

Web 285

Unicode 504

HTML 65

CSS 65

SVG 14 ASP.NET 270 OS 422

Python 66 Knowledge

Mathematics

Algebra 84

Trigonometry 31

Geometry 32

Calculus 67

Engineering

Mechanical

Rigid Bodies

Statics 92

Dynamics 37

Control

Natural Sciences

Electric 27