Sideway
output.to from Sideway
Draft for Information Only

Content

  Powers of Natural Numbers Series[3]
   First n Natural Numbers Series[1]
   First n Natural Number Squares Series[3]
   First n Natural Number Cubes Series[3]

Powers of Natural Numbers Series[3]

Powers of natural numbers series can also be found algebraically by making use of the power of a binomial.

First n Natural Numbers Series[1]

For the first n natural number series, 1+2+3+...+n, a binomial to the power of 2 can be used. By making use of the identity  (n+1)2=n2+2n+1⇒(n+1)2-n2=2n+1. Let n=n-1 and substitute into the identity, then (n)2-(n-1)2=2(n-1)+1. By repeating the n=n-1 substitution, and get (n-1)2-(n-2)2=2(n-2)+1. By repeating the n=n-1 substitution again, and get (n-2)2-(n-3)2=2(n-32=2(n-3)+1. By continuing the n=n-1 substitution process until the original variable n is reduced to 1, that is ..., ((n-(n-2))+1)2-(n-(n-2))2=2(n-(n-2))+1, (1+1)2-(1)2=2(1)+1,  a totally n sets of identities are obtained. By adding up all the identities, the left hand side is reduced to the first and last term, (n+1)2-12, while the right hand side remains the summation of all terms. After rearranging the similar terms on the right hand, the identity becomes (n+1)2-12=2(n+(n-1)+(n-2)+(n-3)+...+2+1)+n(1). Imply (n+(n-1)+(n-2)+(n-3)+...+2+1)=(((n+1)2-1)-n)/2=(n2+n)/2=n(n+1)/2. Imply

 IMAGE...

First n Natural Number Squares Series[3]

For the first n natural number squares series, 12+22+32+...+n2, a binomial to the power of 3 can be used. By making use of the identity  (n+1)3=n 3+ 3n2+3n+1⇒(n+1)3-n3=3n2+3n+1. Let n=n-1 and substitute into the identity, then (n)3-(n-1)3=3(n-1)2+3(n-1)+1. By repeating the n=n-1 substitution, and get (n-1)3-(n-2)3=3(n-2)2+3(n-2)+1. By repeating the n=n-1 substitution again, and get (n-2)3-(n-3)3=3(n-3)2+3(n-3)+1. By continuing the n=n-1 substitution process until the original variable n is reduced to 1, that is ..., (n-(n-2)+1)3-(n-(n-2))3=3(n-(n-2))2+3(n-(n-2))+1, (1+1)3-(1)3=3(1)2+3(1)+1,  a totally n sets of identities are obtained. By adding up all the identities, the left hand side is reduced to the first and last term, (n+1)3-13, while the right hand side remains the summation of all terms. After rearranging the similar terms on the right hand, the identity becomes (n+1)3-13=3(n2+(n-1)2+(n-2)2+(n-3)2+...+22+12)+3(n+(n-1)+(n-2)+(n-3)+...+2+1)+n(1). Imply (n2+(n-1)2+(n-2)2+(n-3)2+...+22+12) =((n+1)3-1-3(n+(n-1)+(n-2)+(n-3)+...+2+1)-n)/3=(n3+3n2+3n+1-1-n)/3-(n+(n-1)+(n-2)+(n-3)+...+2+1) =(n3+3n2+2n)/3-n(n+1)/2 =(2(n3+3n2+2n)-3(n2+n))/6 =(2n3+3n2+n)/6=(n(2n2+3n+1))/6=(n(n+1)(2n+1))/6. Imply

 IMAGE...

First n Natural Number Cubes Series[3]

For the first n natural number cubes series, 13+23+33+...+n3, a binomial to the power of 4 can be used. By making use of the identity  (n+1)4=n 4+4n3+6n2+4n+1⇒(n+1)4-n4= 4n3+6n2+4n+1. Let n=n-1 and substitute into the identity, then (n)4-(n-1)4= 4( n-1) 3+6 ( n-1) 2+4 (n-1)+1. By repeating the n=n-1 substitution, and get (n-1)4-(n-2)4= 4 (n-2) 3+6 (n-2) 2+4 ( n-2)+1. By repeating the n=n-1 substitution again, and get (n-2)4-(n-3)4= 4 ( n-3) 3+6 (n-3) 2+4 ( n-3)+1. By continuing the n=n-1 substitution process until the original variable n is reduced to 1, that is ..., (n-(n-2)+1)4-(n-(n-2))4= 4(n-(n-2))3+6(n-(n-2))2+4(n-(n-2))+1, (1+1)4-(1)4=4 (1)3+6(1)2+4(1)+1,  a totally n sets of identities are obtained. By adding up all the identities, the left hand side is reduced to the first and last term, (n+1)4-14, while the right hand side remains the summation of all terms. After rearranging the similar terms on the right hand, the identity becomes (n+1)4-14= 4(n3+(n-1)3+(n-2)3+(n-3)3+...+23+13)+6(n2+(n-1)2+(n-2)2+(n-3)2+...+22+12)+4(n+(n-1)+(n-2)+(n-3)+...+2+1)+n(1). Imply (n3+(n-1)3+(n-2)3+(n-3)3+...+23+13) =((n+1)4-1-6(n2+(n-1)2+(n-2)2+(n-3)2+...+22+12)-4(n+(n-1)+(n-2)+(n-3)+...+2+1)-n)/4=(n 4+4n3+6n2+4n+1-1-n)/4-6(n2+(n-1)2+(n-2)2+(n-3)2+...+22+12)/4-(n+(n-1)+(n-2)+(n-3)+...+2+1) =(n 4+4n3+6n2+3n)/4-n(n+1)(2n+1)/4-n(n+1)/2 =((n4+4n3+6n2+3n)- (2n3+2n 2+ n2+n) -2(n2+n))/4 =( n4+2n3+n2)/4=(n 2(n2+2n+1))/4=(n 2(n+1) 2)/4=((n(n+1))/2) 2. Imply

IMAGE...

©sideway

ID: 130500021 Last Updated: 5/21/2013 Revision: 0 Ref:

close

References

  1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science & Engineering
  2. Wheatstone, C., 1854, On the Formation of Powers from Arithmetical Progressions
  3. Stroud, K.A., 2001, Engineering Mathematics
  4. Coolidge, J.L., 1949, The Story of The Binomial Theorem
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Reference 79

Computer

Hardware 249

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 429

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019