Sideway
output.to from Sideway
Draft for Information Only

Content

Complex Integration
 Integration in ℝ
 The Fundamental Theorem of Calculus
 Antiderivatives
 Generalization to ℂ
 The Path Integral
 Integrals over Complex-valued Functions
  Examples
 Integraton by substitution
  Examples
 Fact: Independence of Parametrization
 Fact: Piecewise Smooth Curves
 Reverse Paths
 Fact
 Arc Length
  Examples
 Integration with respect to Arc Length
  Examples
 The 𝑀𝐿-Estimate
  Examples
 Antiderivatives and Primitives
 Functions with Primitives
  Examples
 Primitive
 The Cauchy Theorem for Triangles
 Morera's Theorem

source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists

Complex Integration

Integration in ℝ

Let 𝑓:[𝑎,𝑏]→ℝ be continuous. Then 𝑏𝑎𝑓(𝑡)𝑑𝑡= Lim𝑛→∞ 𝑛−1𝑗=0𝑓(𝑡𝑗)(𝑡𝑗+1−𝑡𝑗) where 𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

  • if 𝑓≥0 on [𝑎,𝑏] then 𝑏𝑎𝑓(𝑡)𝑑𝑡 is the "area under the curve".
  • Otherwise: sum of the areas above the x-axis minus sum of the areas below the x-axis.

The Fundamental Theorem of Calculus

TheoremLet 𝑓:[𝑎,𝑏]→ℝ be continuous, and define 𝐹(𝑥)=𝑥𝑎𝑓(𝑡)𝑑𝑡. Then 𝐹 is differentiable and 𝐹′(𝑥)=𝑓(𝑥) for 𝑥∈[𝑎,𝑏].

Antiderivatives

Let 𝑓:[𝑎,𝑏]→ℝ as above. A function 𝑓:[𝑎,𝑏]→ℝ that satisfies that 𝐹′(𝑥)=𝑓(𝑥) for all 𝑥∈[𝑎,𝑏] is called an antiderivative of 𝑓.

Note: If 𝐹 and 𝐺 are both antiderivatives of the same function 𝑓, then (𝐺−𝐹)′(𝑥)=𝐺′(𝑥)−𝐹′(𝑥)=𝑓(𝑥)−𝑓(𝑥)=0 for all 𝑥∈[𝑎,𝑏], and so 𝐺−𝐹 is constant.

Conclusion: Let 𝐺 be any antiderivative of 𝑓. Then

𝑏𝑎𝑓(𝑡)𝑑𝑡=𝐺(𝑏)−𝐺(𝑎)

Generalization to ℂ

Instead of integrating over an interval [𝑎,𝑏]⊂ℝ, integrating in ℂ will be integrating ovver curves. Recall: A curve is a smooth or piecewise smooth function

𝛾:[𝑎,𝑏]→ℂ, 𝛾(𝑡)=𝑥(𝑡)+𝑖𝑦(𝑡)

If 𝑓 is complex-valued on 𝛾, define  𝛾𝑓(𝑧)𝑑𝑧= Lim𝑛→∞ 𝑛−1𝑗=0𝑓(𝑧𝑗)(𝑧𝑗+1−𝑧𝑗) where 𝑧𝑗=𝛾(𝑡𝑗) and 𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

The Path Integral

 𝛾𝑓(𝑧)𝑑𝑧= Lim𝑛→∞ 𝑛−1𝑗=0𝑓(𝑧𝑗)(𝑧𝑗+1−𝑧𝑗)

where 𝑧𝑗=𝛾(𝑡𝑗) and 𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏

One can show: If 𝛾:[𝑎,𝑏]→ℂ is a smooth curve and 𝑓 is continuous on 𝛾, then

 𝛾𝑓(𝑧)𝑑𝑧= 𝑏𝑎𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡 Proof Idea 𝑛−1𝑗=0𝑓(𝑧𝑗)(𝑧𝑗+1−𝑧𝑗) =𝑛−1𝑗=0𝑓(𝛾(𝑡𝑗)) 𝛾(𝑡𝑗+1)−𝛾(𝑡𝑗)𝑡𝑗+1−𝑡𝑗(𝑡𝑗+1−𝑡𝑗)   𝑏𝑎𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡 as 𝑛→∞

Integrals over Complex-valued Functions

Note: If 𝑔:[𝑎,𝑏]→ℂ, 𝑔(𝑡)=𝑢(𝑡)+𝑖𝑣(𝑡), then

𝑏𝑎𝑔(𝑡)𝑑𝑡= 𝑏𝑎𝑢(𝑡)𝑑𝑡+ 𝑖𝑏𝑎𝑣(𝑡)𝑑𝑡

Examples

  • 𝜋0𝑖𝑡𝑑𝑡= 𝜋0cos 𝑡+ 𝑖𝜋0sin 𝑡𝑑𝑡= sin 𝑡=sin 𝑡|𝜋0−𝑖 cos 𝑡=sin 𝑡|𝜋0=0−𝑖(−1−1)=2𝑖
  • Alternatively: 𝜋0𝑖𝑡𝑑𝑡 =−𝑖ℯ𝑖𝑡𝜋0=−𝑖ℯ𝑖𝜋+𝑖ℯ0=2𝑖
  • 10(𝑡+𝑖)𝑑𝑡 =12𝑡2+𝑖𝑡 10=12𝑡2+𝑖
  • 𝛾(𝑡)=𝑡+𝑖𝑡, 0≤𝑡≤1, 𝛾′(𝑡)=1+𝑖, 𝑓(𝑧)=𝑧2. Then

     𝛾𝑓(𝑧)𝑑𝑧= 10𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡= 10(𝑡+𝑖𝑡)2(1+𝑖)𝑑𝑡  = 10(𝑡2+2𝑖𝑡2−𝑡2)(1+𝑖)𝑑𝑡= 10(2𝑖𝑡2−2𝑡2)𝑑𝑡  = −210𝑡2𝑑𝑡+ 2𝑖10𝑡2𝑑𝑡  =23𝑡310 +2𝑖3𝑡310  =23+𝑖23=23(−1+𝑖)
  •  |𝑧|=11𝑧𝑑𝑧=?

    Let 𝛾(𝑡)=ℯ𝑖𝑡, 0≤𝑡≤2𝜋. Then 𝛾′(𝑡)=𝑖ℯ𝑖𝑡, so:

     |𝑧|=11𝑧𝑑𝑧 =2𝜋01𝛾(𝑡)𝛾′(𝑡)𝑑𝑡  =2𝜋01𝑖𝑡𝑖ℯ𝑖𝑡𝑑𝑡  =𝑖2𝜋0𝑑𝑡  =𝑖𝑡|2𝜋0=2𝜋𝑖
  •  |𝑧|=1𝑧𝑑𝑧=?

    Let 𝛾(𝑡)=ℯ𝑖𝑡, 0≤𝑡≤2𝜋. Then 𝛾′(𝑡)=𝑖ℯ𝑖𝑡, so:

     |𝑧|=1𝑧𝑑𝑧 =2𝜋0𝛾(𝑡)𝛾′(𝑡)𝑑𝑡=2𝜋0𝑖𝑡𝑖ℯ𝑖𝑡𝑑𝑡  =𝑖2𝜋02𝑖𝑡𝑑𝑡= 122𝑖𝑡2𝜋0  =12(ℯ4𝜋𝑖−ℯ0)=0
  •  |𝑧|=11𝑧2𝑑𝑧=?

    Let 𝛾(𝑡)=ℯ𝑖𝑡, 0≤𝑡≤2𝜋. Then 𝛾′(𝑡)=𝑖ℯ𝑖𝑡, so:

     |𝑧|=11𝑧2𝑑𝑧 =2𝜋01𝛾2(𝑡)𝛾′(𝑡)𝑑𝑡= 2𝜋0𝑖ℯ𝑖𝑡2𝑖𝑡𝑑𝑡  =2𝜋0𝑖ℯ−𝑖𝑡𝑑𝑡=−ℯ−𝑖𝑡2𝜋0  =−ℯ−2𝜋𝑖+ℯ0
  • In general,

     |𝑧|=1𝑧𝑚𝑑𝑧=2𝜋𝑖, if 𝑚=-1 0, otherwise
  • Let 𝛾:[𝑎,𝑏]→ℂ be a smooth curve, and let 𝑓 be complex-valued and continuous on 𝛾. Then

     𝛾𝑓(𝑧)𝑑𝑧= 𝑏𝑎𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡

    Let 𝛾(𝑡)=1−𝑡(1−𝑖), 0≤𝑡≤1, and let 𝑓(𝑧)=Re 𝑧. Then

     𝛾𝑓(𝑧)𝑑𝑧= 10Re(1−𝑡(1−𝑖))(−1)(1−𝑖)𝑑𝑡  =(𝑖−1) 10Re(1−𝑡)𝑑𝑡  =(𝑖−1)𝑡−12𝑡210  =(𝑖−1)1−12=𝑖−12
  • Let 𝛾(𝑡)=𝑟ℯ𝑖𝑡, 0≤𝑡≤2𝜋. Then 𝛾′(𝑡)=𝑟𝑖ℯ𝑖𝑡. Let 𝑓(𝑧)=𝑧

     𝛾𝑓(𝑧)𝑑𝑧= 𝛾𝑧𝑑𝑧= 2𝜋0𝛾(𝑡)𝛾′(𝑡)𝑑𝑡  = 2𝜋0𝑟ℯ−𝑖𝑡𝑟𝑖ℯ𝑖𝑡𝑑𝑡  =𝑟2𝑖 2𝜋0𝑑𝑡  =2𝜋𝑖𝑟2=(2𝑖)∙area(𝐵𝑟(0))

Integraton by substitution

Let [𝑎,𝑏] and [𝑐,𝑑] be intervals in ℝ and let ℎ:[𝑐,𝑑]→[𝑎,𝑏] be smooth. Suppose that 𝑓:[𝑎,𝑏]→ℝ is a continuous function. Then

ℎ(𝑑)ℎ(𝑐)𝑓(𝑡)𝑑𝑡=𝑑𝑐𝑓(ℎ(𝑠))ℎ′(𝑠)𝑑𝑠

Examples

𝑡=ℎ(𝑠)=𝑠3+1, ℎ′(𝑠)=3𝑠2 42𝑠2(𝑠3+1)4𝑑𝑠= 13ℎ(4)ℎ(2)𝑡4𝑑𝑡  = 13659𝑡4𝑑𝑡  =13𝑡5510  =115(655−95)

Fact: Independence of Parametrization

Let 𝛾:[𝑎,𝑏]→ℂ be a smooth curve, and let 𝛽:[𝑐,𝑑]→ℂ be another smooth parametrization of the same curve, given by 𝛽(𝑠)=𝛾(ℎ(𝑠)), where ℎ:[𝑐,𝑑]→[𝑎,𝑏] is a smooth bijection.

Let 𝑓 be a complex-valued function, defined on 𝛾. Then  𝛽𝑓(𝑧)𝑑𝑧=𝑑𝑐𝑓(𝛽(𝑠))𝛽′(𝑠)𝑑𝑠  =𝑑𝑐𝑓(𝛾(ℎ(𝑠)))𝛾′(ℎ(𝑠))ℎ′(𝑠)𝑑𝑠  =𝑑𝑐𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡= 𝛾𝑓(𝑧)𝑑𝑧 Therefore, the commplex path integral is independent of the parametrization

Fact: Piecewise Smooth Curves

Let 𝛾=𝛾1+𝛾2+⋯+𝛾𝑛 be a piecewise smooth curve (i.e. 𝛾𝑗+1 starts where 𝛾𝑗 ends). Then

 𝛾𝑓(𝑧)𝑑𝑧= 𝛾1𝑓(𝑧)𝑑𝑧+ 𝛾2𝑓(𝑧)𝑑𝑧+⋯+ 𝛾𝑛𝑓(𝑧)𝑑𝑧

Reverse Paths

If 𝛾:[𝑎,𝑏]→ℂ be a curve, then a curve (−𝛾):[𝑎,𝑏]→ℂ is defined by (−𝛾)(𝑡)=𝛾(𝑎+𝑏−𝑡)

Note that (−𝛾)′(𝑡)=𝛾′(𝑎+𝑏−𝑡)(−1). If 𝑓 is continuous and complex-valued on 𝛾, then

 (−𝛾)𝑓(𝑧)𝑑𝑧=𝑏𝑎𝑓((−𝛾)(𝑠))(−𝛾)′(𝑠)𝑑𝑠=−𝑏𝑎𝑓(𝛾(𝑎+𝑏−𝑠))𝛾′(𝑎+𝑏−𝑠)𝑑𝑠  =𝑎𝑏𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡=−𝑏𝑎𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡  = 𝛾𝑓(𝑧)𝑑𝑧

Fact

If 𝛾 is a curve, 𝑐 is a complex constant and 𝑓, 𝑔 are continuous and complex-valued on 𝛾, then

  •  𝛾(𝑓(𝑧)+𝑔(𝑧))𝑑𝑧= 𝛾𝑓(𝑧)𝑑𝑧+ 𝛾𝑔(𝑧)𝑑𝑧
  •  𝛾𝑐𝑓(𝑧)𝑑𝑧=𝑐 𝛾𝑓(𝑧)𝑑𝑧
  •  −𝛾𝑐𝑓(𝑧)𝑑𝑧=− 𝛾𝑓(𝑧)𝑑𝑧

Arc Length

Given a curve 𝛾:[𝑎,𝑏]→ℂ. Let 𝑎=𝑡0<𝑡1<⋯<𝑡𝑛=𝑏. Then length(𝛾)≈𝑛𝑗=0|𝛾(𝑡𝑗+1)−𝛾(𝑡𝑗)| If the limit exists as 𝑛→∞, then this is the length of 𝛾:[𝑎,𝑏]→ℂ 𝑛𝑗=0|𝛾(𝑡𝑗+1)−𝛾(𝑡𝑗)|= 𝑛𝑗=0 |𝛾(𝑡𝑗+1)−𝛾(𝑡𝑗)|𝑡𝑗+1−𝑡𝑗(𝑡𝑗+1−𝑡𝑗)→ 𝑏𝑎|𝛾′(𝑡)|𝑑𝑡 Thus:

length(𝛾)=𝑏𝑎|𝛾′(𝑡)|𝑑𝑡

Examples

  • Let 𝛾(𝑡)=𝑅ℯ𝑖𝑡, 0≤𝑡≤2𝜋, for some 𝑅>0. Then 𝛾′(𝑡)=𝑅𝑖ℯ𝑖𝑡, and so

    length(𝛾)= 2𝜋0|𝑅𝑖ℯ𝑖𝑡|𝑑𝑡= 2𝜋0𝑅𝑑𝑡=2𝜋𝑅
  • Let 𝛾(𝑡)=𝑡+𝑖𝑡, 0≤𝑡≤1. Then 𝛾′(𝑡)=1+𝑖, and so

    length(𝛾)= 10|1+𝑖|𝑑𝑡= 102𝑑𝑡=2

Integration with respect to Arc Length

DefinitionLet 𝛾 be a smooth curve, and let 𝑓 be a complex-valued and continuous function on 𝛾. Then  𝛾𝑓(𝑧)|𝑑𝑧|= 𝑏𝑎𝑓(𝛾(𝑡))|𝛾′(𝑡)|𝑑𝑡 is the integral of 𝑓 over 𝛾 with respect to arc length

Examples

  • length(𝛾)=  𝛾|𝑑𝑧|.
  •  |𝑧|=1𝑧|𝑑𝑧|= 2𝜋0𝑖𝑡⋅1𝑑𝑡=−𝑖ℯ𝑖𝑡 2𝜋0=0

Note: Piecewise smooth curves are allowed as well (break up the integral into a sum over smooth pieces).

The 𝑀𝐿-Estimate

TheoremIf 𝛾 is a curve and 𝑓 is continuous on 𝛾 then  𝛾𝑓(𝑧)𝑑𝑧 𝛾|𝑓(𝑧)||𝑑𝑧|. In particular, if |𝑓(𝑧)|≤𝑀 on 𝛾, then  𝛾𝑓(𝑧)𝑑𝑧≤𝑀⋅length(𝛾)

Examples

  • Let 𝛾(𝑡)=ℯ𝑖𝑡, 0≤𝑡≤2𝜋.  |𝑧|=11𝑧|𝑑𝑧|= 2𝜋0−𝑖𝑡𝑑𝑡=𝑖ℯ−𝑖𝑡 2𝜋0=0
  • Let 𝛾(𝑡)=𝑡+𝑖𝑡, 0≤𝑡≤1. The upper bound for  𝛾𝑧2𝑑𝑧 can be found as following.

    First use the second part of the theorem:  𝛾𝑓(𝑧)𝑑𝑧≤𝑀⋅length(𝛾). For 𝑓(𝑧)=𝑧2, and having that |𝑓(𝑧)|=|𝑧|2≤(2)2=2 on 𝛾, so 𝑀=2. Also, recall that length(𝛾)=2. Thus

     𝛾𝑧2𝑑𝑧≤22
  • Let 𝛾(𝑡)=𝑡+𝑖𝑡, 0≤𝑡≤1, 𝛾′(𝑡)=1+𝑡, |𝛾′(𝑡)|=2, 𝑓(𝑧)=𝑧2. A better estimate for  𝛾𝑧2𝑑𝑧 can be found as following.

    Using the first part of the theorem:  𝛾𝑓(𝑧)𝑑𝑧  𝛾|𝑓(𝑧)||𝑑𝑧| Thus  𝛾𝑧2𝑑𝑧  𝛾|𝑧|2|𝑑𝑧|= 10|𝛾(𝑡)|2|𝛾′(𝑡)|𝑑𝑡= 10|𝑡+𝑖𝑡|22𝑑𝑡  = 102𝑡22𝑑𝑡  = 223𝑡310 =232 Note:  𝛾𝑧2𝑑𝑧=23(−1+𝑖)

Antiderivatives and Primitives

FactFrom the fundamental theorem of calculus, if 𝑓:[𝑎,𝑏]→ℝ is continuous and has an antiderivative 𝐹:[𝑎,𝑏]→ℝ, then 𝑏𝑎𝑓(𝑥)𝑑𝑥=𝐹(𝑏)−𝐹(𝑎) For a complex equivalent. DefinitionLet 𝐷⊂ℂ be a domain, and let 𝑓:𝐷⊂ℂ be a continuous function. A primitive of 𝑓 on 𝐷 is an analytic function 𝐹:𝐷→ℂ such that 𝐹′=𝑓 on 𝐷.

Functions with Primitives

An analytic function 𝐹:𝐷→ℂ such that 𝐹′=𝑓 is a primitive of 𝑓 in 𝐷

TheoremIf 𝑓 is continuous on a domain 𝐷 and if 𝑓 has a primitive 𝐹 in 𝐷, then for any curve 𝛾:[𝑎,𝑏]→𝐷. Thus have that  𝛾𝑓(𝑧)𝑑𝑧=𝐹(𝛾(𝑏))−𝐹(𝛾(𝑎))

Note:

  • The integral only depends on the initial point and the terminal point of 𝛾.
  • Big 'hidden' assumption: 𝑓 needs to have a primitive in 𝐷.
  • Under what assumptions does 𝑓 have a primitive?

Examples

  • Let 𝛾:[𝑎,𝑏]→ℂ be the line segment from 0 to 1+𝑖. What is  𝛾𝑧2𝑑𝑧

    The function 𝑓(𝑧)=𝑧2 has a primitive in ℂ, namely 𝐹(𝑧)=13𝑧3. Therefore, 1+𝑖0𝑧2𝑑𝑧=  𝛾𝑓(𝑧)𝑑𝑧=𝐹(𝛾(𝑏))−𝐹(𝛾(𝑎))  =𝐹(1+𝑖)−𝐹(0)  =13(1+𝑖)3−0  =13(1+3𝑖−3−𝑖)=23(−1+𝑖)

  • Can  |𝑧|=11𝑧𝑑𝑧 using a primitive?

    The function 𝐹(𝑧)=Log 𝑧 satisfies that 𝐹′(𝑧)=1𝑧, but not in all of ℂ.

    • 𝐹 is analytic in ℂ\(−∞,0]
    • Let 𝛾:[𝑎,𝑏]→ℂ be the part of the unit circle, started just below the negative x-axis, to just above the negative x-axis.
    • Then  𝛾1𝑧𝑑𝑧 𝛾1𝑧𝑑𝑧=Log(𝛾(𝑏))−Log(𝛾(𝑎))  𝜋𝑖−(−𝜋𝑖)=2𝜋𝑖
  • Let 𝛾 be any curve in ℂ from 𝑖 to 𝑖2. Then  𝛾𝜋𝑧𝑑𝑧=1𝜋𝜋𝑧𝑖/2𝑖  =1𝜋𝜋𝑖/21𝜋𝜋𝑖  =1𝜋(𝑖+1)
  • Let 𝛾 be any path in ℂ from −𝜋𝑖 to 𝜋𝑖. Then  𝛾cos 𝑧𝑑𝑧=sin𝜋𝑖−𝜋𝑖=sin(𝜋𝑖)−sin(−𝜋𝑖) But sin(𝜋𝑖)−sin(−𝜋𝑖)=sin(𝜋𝑖)+sin(𝜋𝑖)  =2sin(𝜋𝑖)  =2𝑖𝜋𝑖−ℯ−𝑖𝜋𝑖2𝑖 =−𝑖(ℯ−𝜋−ℯ𝜋)=𝑖(ℯ𝜋−ℯ−𝜋)

Primitive

When does 𝑓 have a primitive?

Theorem (Goursat) Let 𝐷 be a simply connected domain in ℂ, and let 𝑓 be analytic in 𝐷. Then 𝑓 has a primitive in 𝐷. Moreover, a primitve is given explicitly by picking 𝑧0∈𝐷 and letting 𝐹(𝑧)=𝑧𝑧0𝑓(𝑤)𝑑𝑤where the integral is taken over an arbitrary curve in 𝐷 from 𝑧0 to 𝑧 One way to prove this theorem is as follows First, show Morera's Theorem: If 𝑓 is continuous on a simply connected domain 𝐷, and if  𝛾𝑓(𝑧)𝑑𝑧=0 for any triangular curve 𝛾 in 𝐷, then 𝑓 has a primitive in 𝐷. Next, show the Cauchy Theorem for Triangles: For any triangle 𝑇 that fits into 𝐷 (including its boundary),  ∂𝑇𝑓(𝑧)𝑑𝑧=0.

The Cauchy Theorem for Triangles

Theorem (Cauchy for Triangles) Let 𝐷 be an open set in ℂ, and let 𝑓 be analytic in 𝐷. Let 𝑇 be a triangle that fits into 𝐷 (including its boundary), and let ∂𝑇 be its boundary, oriented positively. Then  ∂𝑇𝑓(𝑧)𝑑𝑧=0 Proof idea Subdivide the triangle into four equal-sized triangles.The integral of 𝑓 over ∂𝑇 is the same as the sum of the four integrals over the boundaries of the smaller triangles. Use the 𝑀𝐿-estimate and delicate balancing of boundary length of triangles and the fact that𝑓(𝑧)=𝑓(𝑧0)+(𝑧−𝑧0)𝑓′(𝑧0)+𝜀(𝑧−𝑧0)for 𝑧 near a point 𝑧0) inside 𝑇.

Morera's Theorem

Theorem (Morera)If 𝑓 is continuous on a simply connected domain 𝐷, and if  𝛾𝑓(𝑧)𝑑𝑧=0 for any triangular curve in 𝐷, then 𝑓 has a primitive in 𝐷. Proof idea First, show Morera's theorem in a disk (the proof is not hard and resembles the proof of the real-valued fundamental theorem of calculus).Extending the result to arbitrary simply connected domains is not that easy. This part of the proof requires the use of Cauchy's Theorem for simply connected domains.

©sideway

ID: 190400030 Last Updated: 4/30/2019 Revision: 0


Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339new

Travel 8new

Reference 79

Computer

Hardware 251

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 431

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Set 1

Logic 1

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019