source/reference:
https://www.youtube.com/channel/UCaTLkDn9_1Wy5TRYfVULYUw/playlists
Residue Theorem
Motivation
Recall: 𝑓 has an isolated singularity at 𝑧0 if 𝑓 is analytic in {0<|𝑧−𝑧0|<𝑟} for some 𝑟>0. In that case, 𝑓 has a Laurent series expansion
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘, 0<|𝑧−𝑧0|<𝑟.
Observe: If 0<𝜌<𝑟 then
∫|𝑧−𝑧0|=𝜌
𝑓(𝑧)𝑑𝑧=∞∑𝑘=−∞
𝑎𝑘 ∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧
What is ∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧?
For 𝑘≠−1, the function ℎ(𝑧)=(𝑧−𝑧0)𝑘 has a primitive, namely 𝐻(𝑧)=1𝑘+1
(𝑧−𝑧0)𝑘+1. Therefore, ∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧=0 for 𝑘≠−1
For 𝑘=−1, the integral is ∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧. We can use the Cauchy Integral Formula (or compute this directly) and find
∫𝛾
𝑓(𝑧)𝑑𝑧=𝑏∫𝑎
𝑓(𝛾(𝑡))𝛾′(𝑡)𝑑𝑡
∫|𝑧−𝑧0|=𝜌
1𝑧−𝑧0
𝑑𝑧=2𝜋∫0
1𝑧0+𝜌ℯ𝑖𝑡−𝑧0
⋅𝜌ℯ𝑖𝑡𝑑𝑡
=2𝜋∫0
𝑖𝑑𝑡=2𝜋𝑖
∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧=2𝜋𝑖 for 𝑘=−1
Hence
∫|𝑧−𝑧0|=𝜌
𝑓(𝑧)𝑑𝑧=∞∑𝑘=−∞
𝑎𝑘 ∫|𝑧−𝑧0|=𝜌
(𝑧−𝑧0)𝑘𝑑𝑧=2𝜋𝑖𝑎−1.
Therefore, 𝑎−1 gets special attention!
The Residue
DefinitionIf 𝑓 has an isolated singularity at 𝑧0 with Laurent series expansion
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘, 0<|𝑧−𝑧0|<𝑟,
then the residue of 𝑓 at 𝑧0 is Res(𝑓,𝑧0)=𝑎−1.
Examples of finding a residue: to find Laurent series centered at the singular point and read off the term 𝑎−1.
𝑓(𝑧)=1(𝑧−1)(𝑧−2)
=−1𝑧−1
+∞∑𝑘=0
(−1)(𝑧−1)𝑘 in 0<|𝑧−1|<1. Therefore, Res(𝑓,1)=−1
𝑓(𝑧)=1(𝑧−1)(𝑧−2)
=1𝑧−2
−∞∑𝑛=0
(−1)𝑛(𝑧−2)𝑛 in 0<|𝑧−2|<1. Therefore, Res(𝑓,2)=1
More Residue Examples
More examples:
𝑓(𝑧)=sin 𝑧𝑧4
=1𝑧3
−13!
1𝑧
+15!
𝑧−17!
𝑧3+−⋯ in 0<|𝑧|<∞. Therefore, Res(𝑓,0)=−13!
=−16
.
𝑓(𝑧)=cos1𝑧
=1−12!
1𝑧2
+14!
1𝑧4
−16!
1𝑧6
+−⋯. Therefore Res(𝑓,0)=0
𝑓(𝑧)=sin1𝑧
=1𝑧
−13!
1𝑧3
+15!
1𝑧5
−+⋯. Therefore Res(𝑓,0)=1
𝑓(𝑧)=cos 𝑧−1𝑧2
=−12!
+𝑧24!
−+⋯. Therefore Res(𝑓,0)=0
𝑓(𝑧)=1(𝑧2+1
=1(𝑧−𝑖)(𝑧+𝑖)
=12!
(𝑧+𝑖)−(𝑧−𝑖)(𝑧−𝑖)(𝑧+𝑖)
=12!
1(𝑧−𝑖)
−1(𝑧+𝑖)
=12𝑖
⋅1(𝑧−𝑖)
+(analytic function near 𝑖).
Therefore, Res(𝑓,𝑖)=12𝑖
=−12
𝑖.
Similarly, 𝑓(𝑧)=1(𝑧2+1
=−12𝑖
⋅1(𝑧+𝑖)
+(analytic function near −𝑖).
Therefore, Res(𝑓,𝑖)=−12𝑖
=12
𝑖.
The Residue Theorem
Theorem (Residue Theorem)Let 𝐷 be a simply connected domain, and let 𝑓 be analytic in 𝐷, except for isolated singularities. Let 𝐶 be a simple closed curve in 𝐷 (oriented counterclockwise), and let 𝑧1,⋯,𝑧𝑛 be those isolated singularities of 𝑓 that lie inside of 𝐶. Then
∫𝐶
𝑓(𝑧)𝑑𝑧=2𝜋𝑖𝑛∑𝑘=1
Res(𝑓,𝑧𝑘).
Example
𝑓(𝑧)=1(𝑧2+1
is analytic in 𝐷=𝐶, except for isolated singularities at 𝑧=±𝑖.
∫𝐶1
𝑓(𝑧)𝑑𝑧=2𝜋𝑖Res(𝑓,𝑖)=2𝜋𝑖(−12
𝑖)=𝜋
∫𝐶2
𝑓(𝑧)𝑑𝑧=2𝜋𝑖Res(𝑓,−𝑖)=2𝜋𝑖(12
𝑖)=−𝜋
∫𝐶3
𝑓(𝑧)𝑑𝑧=2𝜋𝑖(Res(𝑓,𝑖)+Res(𝑓,−𝑖))=2𝜋𝑖(−12
𝑖+12
𝑖)=−𝜋
∫𝐶4
𝑓(𝑧)𝑑𝑧=0
In order to be able to fully take advantage of this powerful theorem, strategies and techniques that can help calculating residues are needed
Recall the Residue Theorem
Recall:
𝑓 has an isolated singularity at 𝑧0 if 𝑓 is analytic in the punctured disk {0<|𝑧−𝑧0|<𝑟}.
In that case, 𝑓 has a Laurent series representation
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘
in this punctured disk. The representation is unique.
The residue of 𝑓 at 𝑧0 is Res(𝑓,𝑧0)=𝑎−1, the coefficient of term 1𝑧−𝑧0
.
Residues at Removable Singularities
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘, 0<|𝑧−𝑧0|<𝑟.
Recall: 𝑧0 is a removable singularity if 𝑎𝑘=0 for all 𝑘<0. In particular: 𝑎−1=0 in that case, so that Res(𝑓,𝑧0)=0. Example:
𝑓(𝑧)=sin 𝑧𝑧
=1𝑧
∞∑𝑛=0
(−1)𝑛(2𝑛+1)!
𝑧2𝑛+1
=1𝑧
𝑧−13!
𝑧3+15!
𝑧5−17!
𝑧7+−⋯
=1−13!
𝑧2+15!
𝑧4−17!
𝑧6+−⋯
Thus Res(𝑓,0)=0
Residues at Simple Poles
Example:
Res(𝑓,𝑧0)=
Lim𝑧→𝑧0(𝑧−𝑧0)𝑓(𝑧).
Example: 𝑓(𝑧)=1𝑧2+1
has a simple pole at 𝑧0=𝑖 (and another one at −𝑖).
Res1𝑧2+1
,𝑖=
Lim𝑧→𝑖(𝑧−𝑖)1𝑧2+1
=
Lim𝑧→𝑖(𝑧−𝑖)1(𝑧−𝑖)(𝑧+𝑖)
=
Lim𝑧→𝑖(𝑧−𝑖)1(𝑧+𝑖)
=12𝑖
=−𝑖2
Residues at Double Poles
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘, 0<|𝑧−𝑧0|<𝑟.
Recall: 𝑧0 is a double pole if 𝑎−2≠0 and 𝑎𝑘=0 for all 𝑘≤−3. So
𝑓(𝑧)=𝑎−2(𝑧−𝑧0)2
+𝑎−𝑧−𝑧0
+𝑎0+𝑎1(𝑧−𝑧0)+𝑎2(𝑧−𝑧0)2+⋯
How do we isolate 𝑎−? Idea:
(𝑧−𝑧0)2𝑓(𝑧)=𝑎−2+𝑎−(𝑧−𝑧0)+𝑎0(𝑧−𝑧0)2+⋯,
so that
𝑑𝑑𝑧
(𝑧−𝑧0)2𝑓(𝑧)
=𝑎−+2𝑎0(𝑧−𝑧0)+⋯,
Hence
Res(𝑓,𝑧0)=𝑎−=
Lim𝑧→𝑧0𝑑𝑑𝑧
(𝑧−𝑧0)2𝑓(𝑧)
Example
𝑓(𝑧)=1(𝑧−1)2(𝑧−3)
has a double pole at 𝑧0=1 (and a simple one at 3).
Res1(𝑧−1)2(𝑧−3)
,1=
Lim𝑧→1
𝑑𝑑𝑧
(𝑧−1)21(𝑧−1)2(𝑧−3)
=
Lim𝑧→1
𝑑𝑑𝑧
1(𝑧−3)
=
Lim𝑧→1
−1(𝑧−3)2
=−14
.
Residues at Poles of Order 𝑛
𝑓(𝑧)=∞∑𝑘=−∞
𝑎𝑘(𝑧−𝑧0)𝑘, 0<|𝑧−𝑧0|<𝑟.
Recall: 𝑧0 is a pole of order 𝑛 if 𝑎−𝑛≠0 and 𝑎𝑘=0 for all 𝑘≤−(𝑛+1).
𝑓(𝑧)=𝑎−𝑛(𝑧−𝑧0)𝑛
+⋯+𝑎−𝑧−𝑧0
+𝑎0+𝑎1(𝑧−𝑧0)+𝑎2(𝑧−𝑧0)2+⋯
Then
Res(𝑓,𝑧0)=𝑎−=1(𝑛−<)!
Lim𝑧→𝑧0𝑑𝑛−𝑑𝑧𝑛−
(𝑧−𝑧0)𝑛𝑓(𝑧)
More On Residues
RemarkIf 𝑓(𝑧)=𝑔(𝑧)ℎ(𝑧)
, where 𝑔 and ℎ are analytic near 𝑧0, and ℎ has a simple zero at 𝑧0, then
Res(𝑓(𝑧),𝑧0)=𝑔(𝑧0)ℎ′(𝑧0)
.
Example: 𝑓(𝑧)=1(𝑧−1)2(𝑧−3)
, choose 𝑔(𝑧)=1(𝑧−1)2
and ℎ(𝑧)=(𝑧−3). Then 𝑔 and ℎ are analytic near 𝑧0=3, and ℎ has a simple zero at 𝑧0=3. Thus
Res(𝑓,𝑧0)=𝑔(3)ℎ′(3)
=1(3−1)2
1
=14
Evaluating Integrals via the Residue Theorem
Recall: The Residue Theorem
∫𝐶
𝑓(𝑧)𝑑𝑧=2𝜋𝑖𝑛∑𝑘=1
Res(𝑓,𝑧𝑘)
Examples:
∫|𝑧|=1
ℯ3𝑧
𝑑𝑧=2𝜋𝑖Res(𝑓,0), where 𝑓(𝑧)=ℯ3𝑧
=∞∑𝑘=1
1𝑘!
3𝑧
𝑘. Thus Res(𝑓,0)=3, so that
∫|𝑧|=1
ℯ3𝑧
𝑑𝑧=6𝜋𝑖
∫|𝑧|=2
tan 𝑧𝑑𝑧=2𝜋𝑖Res(𝑓,𝜋2
)+Res(𝑓,−𝜋2
), where 𝑓(𝑧)=tan 𝑧=sin 𝑧cos 𝑧
.
To find Res(𝑓,𝜋2
): Note that 𝑓(𝑧)=𝑔(𝑧)ℎ(𝑧)
, where 𝑔(𝑧)=sin(𝑧) and ℎ(𝑧)=cos(𝑧) are analytic near 𝜋2
and ℎ(𝜋2
)=0. Thus Res(𝑓,𝜋2
)=𝑔(𝜋2
)ℎ′(𝜋2
)=sin(𝜋2
)−sin(𝜋2
)=−1
Similarly, Res(𝑓,−𝜋2
)=𝑔(−𝜋2
)ℎ′(−𝜋2
)=sin(−𝜋2
)−sin(−𝜋2
)=−1−(−1)
=−1
Thus ∫|𝑧|=2
tan 𝑧𝑑𝑧=2𝜋𝑖(−1−1)=−4𝜋𝑖.
∫𝐶1
1(𝑧−1)2(𝑧−3)
𝑑𝑧=2𝜋𝑖Res(𝑓,1).
Res(𝑓,1)=
Lim𝑧→1
𝑑𝑑𝑧
(𝑧−1)2(𝑧−1)2(𝑧−3)
=
Lim𝑧→1
𝑑𝑑𝑧
1𝑧−3
=
Lim𝑧→1
−1(𝑧−3)2
=−14
Thus ∫𝐶1
1(𝑧−1)2(𝑧−3)
𝑑𝑧=−14
2𝜋𝑖=−𝜋𝑖2
.
∫𝐶2
1(𝑧−1)2(𝑧−3)
𝑑𝑧=2𝜋𝑖(Res(𝑓,1)+Res(𝑓,3))
Res(𝑓,3)=
Lim𝑧→3
(𝑧−3)(𝑧−1)2(𝑧−3)
=
Lim𝑧→3
1(𝑧−1)2
=14
More Examples
The Residue Theorem can also be used to evaluate real integrals, for example of the following forms:
2𝜋∫0
𝑅(cos 𝑡,sin 𝑡)𝑑𝑡, where 𝑅(𝑥,𝑦) is a rational function of the real variables 𝑥 and 𝑦.
∞∫−∞
𝑓(𝑥)𝑑𝑥, where 𝑓 is a rational function of 𝑥.
∞∫−∞
𝑓(𝑥)cos(𝛼𝑥)𝑑𝑥, where 𝑓 is a rational function of 𝑥.
∞∫−∞
𝑓(𝑥)sin(𝛼𝑥)𝑑𝑥, where 𝑓 is a rational function of 𝑥.
Evaluating an Improper Integral via the Residue Theorem
GoalEvaluate ∞∫0
cos 𝑥1+𝑥2
𝑑𝑥.
An Improper Integral
Note: ∞∫0
⋯𝑑𝑥 means Lim𝑅→∞
𝑅∫0
⋯𝑑𝑥, so we need to consider 𝑅∫0
cos 𝑥1+𝑥2
𝑑𝑥 and then let 𝑅→∞. Idea:
𝑅∫0
cos 𝑥1+𝑥2
𝑑𝑥=12
𝑅∫−𝑅
cos 𝑥1+𝑥2
𝑑𝑥
=12
𝑅∫−𝑅
cos 𝑥+𝑖sin 𝑥1+𝑥2
𝑑𝑥
=12
𝑅∫−𝑅
ℯ𝑖𝑥1+𝑥2
𝑑𝑥.
Idea:
12
𝑅∫−𝑅
ℯ𝑖𝑥1+𝑥2
𝑑𝑥=
12
∫[−𝑅,𝑅]
ℯ𝑖𝑧1+𝑧2
𝑑𝑧
=12
∫𝐶𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧−12
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧
=12
2𝜋𝑖Resℯ𝑖𝑧1+𝑧2
,𝑖−12
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧
we thus need to find the residue of 𝑓(𝑧)=ℯ𝑖𝑧1+𝑧2
at 𝑧0=𝑖 and estimate the integral over Γ𝑅.
Finding the residue of 𝑓(𝑧)=ℯ𝑖𝑧1+𝑧2
at 𝑧0=𝑖
𝑓 has a simple pole at 𝑧=𝑖.
Thus Res(𝑓,𝑖)=
Lim𝑧→𝑖
(𝑧−𝑖)𝑓(𝑧)=
Lim𝑧→𝑖
(𝑧−𝑖)ℯ𝑖𝑧1+𝑧2
=
Lim𝑧→𝑖
ℯ𝑖𝑧𝑧+𝑖
=ℯ-12𝑖
.
Hence 12
∫𝐶𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧=12
2𝜋𝑖12𝑖ℯ
=𝜋2ℯ
.
Estimating 12
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧
We are only interested in what happens as 𝑅→∞
Want to show 12
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧→0 as 𝑅→∞
Therefore, it suffices to show that ∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧≤const(𝑅), where the constant, const(𝑅) goes to zero as 𝑅→∞
Recall: ∫Γ𝑅
𝑓(𝑧)𝑑𝑧≤length(Γ𝑅)⋅
max𝑧∈Γ𝑅
|𝑓(𝑧)|.
Thus: ∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧≤length(Γ𝑅)⋅
max𝑧∈Γ𝑅
ℯ𝑖𝑧1+𝑧2
.
ℯ𝑖𝑧1+𝑧2
=ℯRe(𝑖𝑧)|1+𝑧2|
=ℯ−𝑦|1+𝑧2|
≤ℯ−𝑦𝑅2−1
≤1𝑅2−1
for 𝑧∈Γ𝑅, since |𝑧|=𝑅 and 𝑦≥0 on Γ𝑅.
So ∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧≤𝜋𝑅1𝑅2−1
→0 as 𝑅→∞
Thus ∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧→0 as 𝑅→∞
To find: ∞∫0
cos 𝑥1+𝑥2
𝑑𝑥.
∞∫0
cos 𝑥1+𝑥2
𝑑𝑥=Lim𝑅→∞
𝑅∫0
cos 𝑥1+𝑥2
𝑑𝑥
𝑅∫0
cos 𝑥1+𝑥2
𝑑𝑥=12
∫𝐶𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧−12
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧
12
∫𝐶𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧=12
⋅2𝜋𝑖Resℯ𝑖𝑧1+𝑧2
,𝑖=𝜋2ℯ
∫Γ𝑅
ℯ𝑖𝑧1+𝑧2
𝑑𝑧→0 as 𝑅→∞
Hence ∞∫0
cos 𝑥1+𝑥2
𝑑𝑥=𝜋2ℯ
.