Draft for Information Only
ContentPythagorean Triples
Pythagorean TriplesBinary operation on π₯2+ππ¦2=1β(π₯,π¦)β(π€,π§)=(π₯π§βππ¦π€,π₯π€+π¦π§) Consider π₯2+ππ¦2=1 over a finite field π½π Theorem: Wherther or not π is a square in π½π, there is a solution π such that π is generated by π, i.e. π=πββ―βπ for all πβπThis single generator is similar to the primitive root mod π Proof: Consider the field ext πΎ=π½π(βπ). Denote: [π]π=πββ―βπ. Define π:πβπΎ by π(π)=π₯+π¦βπ with rational solution (π₯,π¦). ![]()
Idea: One rational point and a tangent line β given a rational point. Intesection to degree 2 such that a cubic curve of degree 3 to degree 2 and the tangent line with Example π₯3+2π¦3=3π={π₯3+2π¦3=3}. π=(1,1)βπ. Let πΉ(π₯,π¦)=π₯3+2π¦3β3 tangent line at (π,π)=βπΉβπ₯(π₯βπ)+ βπΉβπ¦(π¦βπ)=3π2(π₯βπ)+6π2(π¦βπ)=0 So 3(π₯β1)+6(π¦β1)=0 and π₯3+2π¦3=3 subst. π§=π₯β1, π€=π¦β1 3π§+6π€=0 and (π§+1)3+2(π€+1)3=3 6π€2(3βπ€)=0βπ€=3βπ¦=4, π₯=β5 Idea: repeat with (β5,4) Line: 25(π₯+5)+32(π¦β4)=0 and π₯3+2π¦3=3 subst. π§=π₯+5, π€=π¦β4 π₯=655/253, π¦=β488/253, 253=11*23 Therefore (1,1)β(β5,4)β(655/253,β488/253) Idea: Two rational points and a secant lineβa rational point β 741253(π₯β1)β 402253(π¦β1)=0 and π₯3+2π¦3=3 subst. π§=π₯β1, π€=π¦β1 741π§+402π€=0 and (π§+1)3+2(π€+1)3=3 27732342π€315069223+ 419922π€261009+ 1080π€247=0 Therefore π€β0, β 741253(π₯β1)=0βπ€ 741253 741253 27732342π€15069223+ 9108061009 2630918269, π¦= 344918269βπ₯β1.44, π¦β0.18 Tangent line, πβπ and Secant line, π βπ Mordell-Weil Theorem: There are a finite subset of solutions that generate all solutions. Source and Referencehttps://www.youtube.com/watch?v=hrp0GdsqLEghttps://www.youtube.com/watch?v=PZlVYEihCh0 Β©sideway ID: 201100017 Last Updated: 17/11/2020 Revision: 0 Ref: ![]() References
![]() Latest Updated Links
![]() ![]() ![]() ![]() ![]() |
![]() Home 5 Business Management HBR 3 Information Recreation Hobbies 8 Culture Chinese 1097 English 337 Reference 67 Computer Hardware 151 Software Application 202 Digitization 25 Latex 10 Manim 159 Numeric 19 Programming Web 285 Unicode 494 HTML 65 CSS 59 ASP.NET 194 OS 391 DeskTop 7 Python 37 Knowledge Mathematics Formulas 8 Algebra 29 Number Theory 206 Trigonometry 18 Geometry 18 Calculus 67 Engineering Tables 8 Mechanical Rigid Bodies Statics 92 Dynamics 37 Fluid 5 Control Acoustics 19 Natural Sciences Electric 27 Biology 1 |
Copyright © 2000-2021 Sideway . All rights reserved Disclaimers last modified on 06 September 2019