Sideway
output.to from Sideway
Draft for Information Only

Content

 Pythagorean Triples
 Geometric Approach
 𝑦-intercept
 Conic Section Example π‘₯2+2𝑦2=1
 Key Ingredients for Binary Operation: π‘₯2+𝑑𝑦2=1
  Generalization to degree 3 with three variables
  Generalization to twists: π‘Žπ‘₯2+𝑏𝑦2=𝑐→π‘₯2+π‘Žπ‘¦2=𝑏
 Key Ingredients for Parameterisation: π‘₯2+𝑑𝑦2=1
 Source and Reference

Pythagorean Triples

image Pythagorean triples: π‘₯2+𝑦2=1 with rational solutions. The rational solution (π‘₯,𝑦) can also be reference to another fixed rational point i.e. (1,0)

Geometric Approach

image By sweeping a line about a fixed rational point (1,0), the slope of the line jointing the rational point (π‘₯,𝑦) can be used to represent this rational point. And the slope is equal to 𝑦π‘₯βˆ’1. Since the rational solutions of π‘₯2+𝑦2=1 always preserves the rationality of slope. In other words, the rational point (π‘₯,𝑦) is mapped to a rational slope. 𝑍0={(π‘₯,𝑦):π‘₯2+𝑦2=1,π‘₯β‰ 1} π‘š:𝑍0β†’β„š given by π‘š(𝑃)=𝑦π‘₯βˆ’1 Similarly, the map π‘š can be defined for more general curves. And the properties of π‘š are
  • π‘š is 1-to-1
  • π‘š is surjective.
  • π‘šβˆ’1:β„šβ†’π‘0 is given by rational functions
These properties⇒a parameterisation

𝑦-intercept

image Similar to Riemann stereographic projection, the slope of the sweeping line can be projected as the 𝑦-intercept on the 𝑦-axis. The parameterisation of the 2-degee equation with one fixed point gives one unique association with the remaining point. Let π‘šβˆ’1(𝑑)=(π‘₯,𝑦); π‘₯2+𝑦2=1 β‡’π‘š(𝑃)=𝑑⇒𝑦π‘₯βˆ’1=𝑑 ⇒𝑦=𝑑(π‘₯βˆ’1) and π‘₯2+𝑦2=1 Let 𝑧=π‘₯βˆ’1 ⇒𝑦=𝑑𝑧 and (𝑧+1)2+𝑦2=1 β‡’(𝑧+1)2+(𝑑𝑧)2=1 ⇒𝑧2+2𝑧+𝑑2𝑧2=0 β‡’(1+𝑑2)𝑧2+2𝑧=0 If 𝑧≠0 β‡’(1+𝑑2)𝑧+𝑧=0 ⇒𝑧=βˆ’21+𝑑2β‡’π‘₯βˆ’1=βˆ’21+𝑑2 β‡’π‘₯=𝑑2βˆ’11+𝑑2βˆŠβ„š ⇒𝑦=𝑑𝑧=π‘‘βˆ’21+𝑑2=βˆ’2𝑑1+𝑑2 β‡’π‘šβˆ’1(𝑑)=(π‘₯,𝑦)=𝑑2βˆ’11+𝑑2,βˆ’2𝑑1+𝑑2

Conic Section Example π‘₯2+2𝑦2=1

Similar to other conic section. image Binary Operation of π‘₯2+2𝑦2=1
Let 𝑃(π‘₯,𝑦),𝑄(𝑀,𝑧) be the solution of the equation. β‡’(π‘₯+π‘¦βˆš2𝑖)(π‘₯βˆ’π‘¦βˆš2𝑖)=1 and (𝑀+π‘§βˆš2𝑖)(π‘€βˆ’π‘§βˆš2𝑖)=1 β‡’(π‘₯π‘§βˆ’2𝑦𝑀)2+2(π‘₯𝑀+𝑦𝑧)2=1 So π‘ƒβŠ•π‘„=𝑅 where 𝑅=(π‘₯π‘§βˆ’2𝑦𝑀,π‘₯𝑀+𝑦𝑧) image map π‘š:𝑍0β†’β„š given by π‘š(𝑃)=𝑦π‘₯βˆ’1 where 𝑍0={(π‘₯,𝑦):π‘₯2+2𝑦2=1, π‘₯β‰ 1} π‘šβˆ’1(𝑑)=(π‘₯,𝑦), where 𝑦=𝑑(π‘₯βˆ’1) Let 𝑧=π‘₯βˆ’1β‡’(𝑧+1)2+2𝑑2𝑧2=1⇒𝑧((1+2𝑑2)𝑧+2)=0 ⇒𝑧=βˆ’2/(1+2𝑑2) β‡’π‘₯=2𝑑2βˆ’11+2𝑑2 ⇒𝑦=βˆ’2𝑑21+2𝑑2 β‡’π‘šβˆ’1(𝑑)=2𝑑2βˆ’11+2𝑑2,βˆ’2𝑑21+2𝑑2 π‘šβˆ’1:β„šβ†’π‘0

Key Ingredients for Binary Operation: π‘₯2+𝑑𝑦2=1

π‘₯2+𝑑𝑦2=1
  • RHS being 1
  • (π‘₯+π‘¦βˆšπ‘‘)𝑛=π‘₯'+𝑦'βˆšπ‘‘β‡’π‘₯2𝑛+𝑑𝑦2𝑛=1

Generalization to degree 3 with three variables

π‘₯3+2𝑦3βˆ’6π‘₯𝑦𝑧+4𝑧3=1β‡’manipulate βˆ›2

Generalization to twists: π‘Žπ‘₯2+𝑏𝑦2=𝑐→π‘₯2+π‘Žπ‘¦2=𝑏

Key Ingredients for Parameterisation: π‘₯2+𝑑𝑦2=1

  • A rational point (1,0)
  • The degree being 2β‡’π‘šβˆ’1:β„šβ†’π‘0

Source and Reference

https://www.youtube.com/watch?v=XiwGK8sdwpQ
https://www.youtube.com/watch?v=eLoQz1WRFu0

Β©sideway

ID: 201100016 Last Updated: 11/16/2020 Revision: 0 Ref:

close

References

  1. B. Joseph, 1978, University Mathematics: A Textbook for Students of Science & Engineering
  2. Wheatstone, C., 1854, On the Formation of Powers from Arithmetical Progressions
  3. Stroud, K.A., 2001, Engineering Mathematics
  4. Coolidge, J.L., 1949, The Story of The Binomial Theorem
close

Latest Updated LinksValid XHTML 1.0 Transitional Valid CSS!Nu Html Checker Firefox53 Chromena IExplorerna
IMAGE

Home 5

Business

Management

HBR 3

Information

Recreation

Hobbies 8

Culture

Chinese 1097

English 339

Travel 4

Reference 79

Computer

Hardware 251

Software

Application 213

Digitization 32

Latex 52

Manim 205

KB 1

Numeric 19

Programming

Web 289

Unicode 504

HTML 66

CSS 65

SVG 46

ASP.NET 270

OS 431

DeskTop 7

Python 72

Knowledge

Mathematics

Formulas 8

Set 1

Logic 1

Algebra 84

Number Theory 206

Trigonometry 31

Geometry 34

Coordinate Geometry 2

Calculus 67

Complex Analysis 21

Engineering

Tables 8

Mechanical

Mechanics 1

Rigid Bodies

Statics 92

Dynamics 37

Fluid 5

Fluid Kinematics 5

Control

Process Control 1

Acoustics 19

FiniteElement 2

Natural Sciences

Matter 1

Electric 27

Biology 1

Geography 1


Copyright © 2000-2024 Sideway . All rights reserved Disclaimers last modified on 06 September 2019